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Concentrating Solar Power (CSP)
» Use sun’s heat energy

— Steam generation

— Electricity via turbines
» Applications:

— Utility grid power plants

— Solar heating/lighting

— Solar cooking

Siemens Power
Generation
AR

www.solag.eu
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Concentrating Photovoltaics (CPV)
« Use light photons

— Photoelectric effect

— Direct conversion to electricity
 Applications:

— Utility grid power plants

— Off-grid power generation

— Small-scale power

www.slashphone.com

Batir Development
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» Concentrate thermal radiation to generate steam

* Thermal storage medium
—Water, iron ore, molten salt, liquid metal (sodium)

« Steam generators, turbines, sterling engines
—~12% solar-to-electric conversion efficiency

The Solel Solar Field

El\ : Application to Power Plant
Oil expansion
- _ vessel
ANy
I

&

Oil heater

Hot oil loop

Cooling tower

A

L Diagram courtesy of:
cooling water loop Solel Power Generation

=
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» Parabolic Dish Installations

—1-dimensional line focus track East-West
— 9 plants in California generating 354 MW

Schott Solar Solel Power Generation

« Sterling Engine
— Convert heat directly into mechanical energy
— Compress/expand gas within cylinders

Kennyjacob.net By Richard Wheeler 2007 Nationmaster.com/sterling-engine
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« Solar Tower
— Heliostats reflect energy to central tower
— Steam generation
— Solar 2: Barstow, CA
—PS10: Seville, Spain

Energy.ca.gov
Energiaspain.com

 Solar Updraft Tower (concept only)
— Heat air to induce convection
— Moving air drives turbines

Images courtesy of Enviromission.com
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» Photoelectric Effect (1902):
— Photon energy is transferred to semiconductor lattice
— Electrons excited into conduction band
— Charge carriers move via drift (static E-field) or diffusion
* Photons must span the material bandgap
— Lower energy photons pass through cell
— Excess energy dissipated as heat

A . g Front electrode (-) Sunlight
* P-N junction creates E-field to move b i 1 N :
carriers to cell contacts Ntype silicon (P+) = -
» Current generating device Fipesion(i B S 1 }
—>120mA at 1V koot ' L foumen

Girasolar.com.tr

Cells are mounted in series to
increase voltage and parallel to add
current. Modules consist of 24-36
cells outputting upwards of 200W.
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Day4 Energy
Energyoptions.biz
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* Increased light intensity:

— Increases photocurrent (additional photons)
— Reduces open-circuit voltage (increased heat)
* Negligible real-world efficiency gain

/} 4\ N\
\\ AN

E § Increasing \ \\

S i . ’g Heat

. IrI]r(l:treer{?ssiltr;/g O < : Reuk.com.uk

Voltage 1 Voltage
* CPV motivation: reduce system cost
* Replace expensive semiconductors with
Inexpensive lenses/mirrors
* Incorporate small-area, high-efficiency
Colorado Energy News SOIa’r CE”S
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Type I:
Crystalline Silicon

Photo courtesy of Kyocera

Type Il
Thin Film

Photo courtesy of Global Solar

15-18% Efficiency

* Mono- or Polycrystalline
» Crystalline Lattice
* Indirect Bandgap
* >100um Thickness

» Direct and diffuse sunlight
» Suppliers:
* Kyocera

* Sharp
* Mitsubishi

6-12% Efficiency

10um Active Layer

» Amorphous Silicon

* CdTe, CdS, CIGS

» Direct Bandgap

* Rigid or flexible substrate
» Suppliers:

+ First Solar

* NanoSolar
* Global Solar

Type llI:
Multijunction

Photo courtesy of Spectrolab

>40% Efficiency

« 2- or more Bandgaps
* Incresed spectral response
* GalnP — GalnAs — Ge

* High material/fabrication costs
« Small cell area
* Flux Concentration

* Suppliers:

» Spectrolab
* Emcore
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V Best Research-Cell Efficiencies
/
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Earth:
Sun: Diameter: 1.27 x 10’ m
Diameter: 1.39 x 10°m Surface Temp: 14.6°C
Surface Temp: 5250°C
/ +0.25°

Distance: 1.495 x 101 m

* Theoretical Limit of Concentration

« 2" | aw of Thermodynamics: Heat generally cannot spontaneously flow
from a material at lower temperature to a material at higher temperature

— Receiver cannot exceed the temperature of the sun

2D:Input Area: | 1 _213 C,_ = 1
Cell Area sin 4,

v = 45,300
sin® &,,,

Note: Concentration ratio may be increased by placing the receiver within a dielectric

2/11/2009
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North Pole

South'Pole

23.5° Declination angle

— Accounts for seasonal variations
Solstice: most oriented toward sun

— Longest/Shortest days of the year
Equinox: no tilt towards sun

— Exactly 12hrs day/night

Arctic Circle marks latitude (66.5°) for
polar day/night (24 hrs)

Images courtesy of physicalgeometry.net
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Winter Solstice

Equinox
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» Latitude determines solar elevation
« 47° seasonal elevation variation (£23.5°)

m @b\
0° Latitude N S
40° Latitude N

66.5° Latitude © o ey & Sos, i

90° —— e e
[ [{c) Univ. of Oregon SRML
| Spensor: ETO

L |Lat: 32.85; Long: —117.25
-8

Sun Chart: g0 i o - Ll L]
» Solar Azimuth vs Elevation : | Sy

» Plots daily and seasonal variation :
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- Etendue: product of entrance pupil and acceptance angle remains
constant throughout all optical systems

—D0,=d6,

6;

0,
s Blackb )
» Path length may not be maintained D concentrator v

« Minimum receiver size when 6,=90°
—aberration free /0.5 lens

Cone Concentrator Hyperbolic Trumpet Free-form Optic

\
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VCPC: Compound Parabolic Concentrator
/

» Achieves thermodynamic limit in 2D

 Very large aspect-ratio (52m length for 1mm receiver)

— <5x concentration in practical installations

« Commonly used as secondary concentrators

Axis of
CPC N

o=y

\
\

Acceptance /

Axis of
parabola A
\

1
angle ..,
\J/‘T\y/ Axis of
\ parabola B
N
\\ /
Parabola / Parabola
B A
Truncated portion / \
s of parabola A / \
\\J
s Focus of

N /1
s parabola A (F,) N parabola B (Fy)
s =~ —~— i = ~ — <l =
_______ dz — e e e

—

Truncated portion
of parabola B »

Focus of S_//
//

=

pes.7

Winston, Minano & Benitez, Nonimaging Optics , Elsevier (2005)

Lasergold.com

Paradigma.de
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* Inexpensive, planar reflective structures
* Minimize gap losses between cells/modules
« Low Concentration (1.5-3x)

Contact Active
Grid Line PV Cell

www.zytech.es

 Solaria Corp. Fremont CA
« Zytech Solar, La Muela Spain
» Ben-Gurion University of the Negev, Israel

www.solaria.com
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» Refractive facets in tandem with catadioptric prisms
— Nonimaging due to unequal path lengths
— Similar performance to reflective lenses without costly metallic coatings

» >1000x concentration
» Achieves very low f/# \
) €
— Scattering losses Refracting and -
. f Reflecting prisms
— Prism blocking A\
— Chromatic dispersion & 4
_g Reflecting prisms ]
Nonimaging § Focal | Light
Fresnel Concentrator 3 Plane | Source
U T eeaniaons D O D 1 Reflcting prisms '
' | | | | | | I T | | | | | I 1 | | | 1 | | |
U B bt DEE LN b e e B <
SEARERNISINEICERICIRRRERES %
|1 : ' RERRER : ~l | E Refracting and » —
LA = '.' 3 ' | Reflecting prisms n [ 2
_______ 4 ! 4
springpointlight.org
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» Absorb solar radiation and reemit at longer wavelengths (Stoke’s Shift)

« Embed guiding high-index slab with absorption medium
— Fluorescent dye(s)
— Quantum dots

 Collect guided light at slab edge Diffuse

Loss
« Concentration = Length / Height I/ /

— Energy loss from wavelength shift

— Probability of reabsorption

— Quantum efficiency

— Loss due to omnidirectional reemission

www.beseenonabike.com
www.renewableenergyworld.com
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* Increase number of discrete bandgaps
— Improves spectral response and efficiency
—4 and 6 junction solar cell research

» Material lattice mismatch — defects
— Metamorphic PV cells provide buffer layers

* Research for high-energy UV photocells

—AlGalnP (2.2eV)

Spectrolab

A Boeing Company

Barnett, A. et al., "50% Efficient Solar Cell Architectures and Designs,"
Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE

4th World Conference on , vol.2, no., pp.2560-2564, May 2006

R. King, “Multijunction Cells: Record Breakers,” Nature Photonics, Vol 2,

284-286 (2008).

2/11/2009
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* 40.7% @ 240x: Spectrolab Inc. lattice-matched triple-junction (2006)
* 41.1% @ 454x: Fraunhofer ISE metamorphic triple-junction (2009)
 Solar cell flash test:

— Impulse from flash lamp (variable “concentration”)

— Does not account for heat or real concentrating optics
» 4% efficiency loss per 10°C
» 85% typical optical efficiency of concentrator

©
o
—T]
1

foe)
g
—

Fill factor [%]

o ©

o ©
.\
o
.4'/

¢
,-°/.

| N |
AN

#2517-3-01-17 N 41.1 @454x |

max
Ga,.In, P/Ga . In, As/Ge \
T=25°C, A=0.0509 cm? e,

oo
N

A\
T AN T 7

. ) p— fill factor _—"
X —=— efficiency
o 35+ .
c
Q0
3)
E |
Lu30-,1 NP | M el
1 10 100 1000
Sunlight Concentration
Image courtesy of NASA Fraunhofer Institute for Solar Energy Systems
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PHOTO- 9

finger ‘inverted” pyramids

Increase photon absorption
— Extend photon lifetime

Inverted-pyramid
— Anisotropic chemical etch
Black Silicon
— Pulsed-laser etching
Surface plasmon enhancement
— Gold nanoparticles

a/[TO
3.00
150 H
000
. i a-S:
Green, M.A., "High efficiency silicon solar cells," Optoelectronic and Microelectronic Materials 0.60
And Devices Proceedings, 1996 Conference on, vol., no., pp.1-7, 8-11 Dec 1996
0.45
E. Mazur - SiOnyx
D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “/mproved performance of 0.30
amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby
metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006) 015
0.00
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3 types of solar-thermal concentrators featured in a 1934 issue of Popular Science Monthly

e

Modern advances in photovoltaic technology prompt novel concentrator design

2/11/2009 PHOTONIC SYSTEMS INTEGRATION LABORATORY — UCSD JACOBS SCHOOL OF ENGINEERING
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o 720kW installed since 2003
» 249 efficient silicon solar cells

30 parabolic dishes
—14m in diameter

* 500x concentration

Installations:
Hermannsburg, Australia
Yuendumu , Australia
Lajamanu , Australia
Umuwa , Australia

Images courtesy of Solar Systems, Australia
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« 570kW installed since 2000
— 59kW “blocks” assembled together

» 3.7GW/hr produced to date
« 26.7% efficient silicon solar cells
« 500x 7"°x7" acrylic fresnel lens

MegaModule ™

Installations:
Glendale, AZ
Prescott, AZ
Las Vegas, NV

Images courtesy of Amonix
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\ V CPV Start-ups
/

SolFocus — Mountain View, CA

 CPV system

—500x Cassegrain telescope
— Spectrolab 3-junction cells (38%)

Images courtesy of SolFocus

Installations:
Castilla La Marcha, Spain
Palo Alto, CA
Fremont, CA
Kailua Kona, HI

2/11/2009

1

opticlast
i '
20.% | air

incidentjradiation

3 Secondary
dielectric %, | mirror
n=15%5 i
| primary
mirror

terminal dielectric '
6,/8,,, concentrator |

(200})\
N

B, =6, ou

Concentrix Solar — Freiburg Germany

« FLATCON system

—500x silicon film fresnel lens on glass
— Fraunhofer ISE 3-junction cells (36%)

Images courtesy of Concentrix

Installations:

Castilla La Marcha, Spain
Seville, Spain
Lorca, Spain
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I 2400-2600
S [)2200-2400
: : - W [32000- 2200
* Non-uniform illumination ;b s o
—Tunnel junctions i SR (3140C- 100
b : e i [ 1200-1400
— Localized heating e LRI @1000- 1200
: 3 e . I 800-1000
* Material durability = [1600-200
) . ; ] y L T [1400-800
— Life-time of mirror coatings 200400
: : [@0-200
— Plastic degradation

Luque & Andreev, Concentrator Photovoltaics, Springer (2007)

» Real-world test data
— Failure mechanisms
— Die-bonding
—Wind loading
— Impact resistance
— Tracking / Misalignment

gate.etamax.de
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70

| 50X Dichroic Spectral Division

65| Target theoretical 10X ‘I/,_-
efficiency 63% 520 1632

| UV Visible

60

55

50

Efficiency (%)

45

40

35

1 2 3 4 5 6 T 8
Number of Junctions

10

Single Path

6-Junction
PV Cell

Barnett, A. et al., "50% Efficient Solar Cell Architectures and Designs,"
Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE
4th World Conference on , vol.2, no., pp.2560-2564, May 2006
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, panan

Paths (-)v-érlap Separated and Interleaved PV Cells

j/ AR-Coating « Single micro-optic incorporates lens and dichroic
* Individual elements fit together to form an array

Adjacent
Dichroic

Dichroic Coating
(reflect IR, transmit VIS)

[F=——"——1 Interleaved cells
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Freeform dichroic surface:
— Front and backside illumination
— Optimized “local” regions
Tapered Sidewalls:
— TIR cone confines wide angles
— All planar surfaces

3 « Zemax Non-sequentials:
\A = . » ¢ " . ) " [
« Rays can: TIR, multiple ‘hits’, avoid objects, etc.
¥ » Aspheric lens with intermediate focus

Tapered exit apertures couples to PV cell
— <45° exiting ray angles

2/11/2009 PHOTONIC SYSTEMS INTEGRATION LABORATORY — UCSD JACOBS SCHOOL OF ENGINEERING
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VAngular Performance
/

Transmission Path: 87% Average Collection

N/S lllumination Angle

i
-5 0 5
E/W lllumination Angle

14° off-axis illumination /
| 4
P /
16° N/S /
°E/W \

Reflection Path: 84% Average Collection

N/S lllumination Angle
o

T

! l !

T

-5 0 5
E/W lllumination Angle

10

15

2/11/2009

Transmission:

— 100% Peak, 87% Average
Reflection:

— 96% Peak, 84% Average
Nonimaging sidewalls minimize
‘hot spots’ at PV cells
Paraxial lens equivalent:

— 22°x10° angular acceptance

— 60% less light collection
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Diamond-Turned Master Molded 1D Array Assemble with Index-matching Epoxy
'
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Assembled PV Array

S * Incorporate large number of energy bandgaps
SIS » Spectral splitting simplifies multijunction fabrication
- * Double-reflection geometry:
* Improves packaging
» Simplifies thermal management
« Single micro-optic designed for array concatenation
* Thin ‘sheet’ geometry reduces optical volume
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Component Research

* [1I-V multijunction materials / fabrication
— Device performance and reliability

« Concentrator miniaturization
— Nonimaging / aspheric optics
— Simplified fabrication and assembly (cost)
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Systems level research:
« Smart-Grid technology
—Weather and demand monitoring
* Power transmission / distribution
» Solar energy storage:
— Thermal storage (molten salt)
— Pumped water
— Batteries
» Hybrid power plants
— CPV, Natural gas, coal

’ Diraction of water llow when ganarating
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A Ovoction ot water flow when pumping

»
‘ Rotation when generating

3 Rotation reversed when pumping
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Thank You

jkarp@ucsd.edu
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